Флюорография, рентген и доза облучения
Недавно, побывав у врача, получил направление на флюорографию. Стоять в очереди на «бесплатную» флюорографию здоровья и времени хватит не у каждого, поэтому решил сделать платно.
Тут выяснилась первая интересная вещь: большинство клиник флюорографию не делают вообще, предлагая вместо неё рентген.Это удивило, потому что предполагалось, что назначение врачом флюорографии имеет какой-то смысл.
А раз многие клиники флюорографию не делают в принципе, то, выходит, смысла в ней нет?
Флюорография или рентген
Поиск по интернету на тему флюорографии и рентгена легких дал такие результаты:
- Флюорография и рентген – это похожие, но разные технологии: флюорография даёт уменьшенное изображение объекта. Врачи говорят, на флюорографии заболевание видно хуже, чем на рентгеновском снимке, и при сомнениях назначают рентген (т.е. повторное облучение)!
- И флюорография, и рентген бывают плёночные (старая технология) и цифровые (новая технология).
- Эффективная эквивалентная доза (ЭЭД) при проведении пленочной флюорографии составляет 0,5-0,8 мЗв
- ЭЭД при проведении цифровой флюорографии составляет в среднем 0,04 мЗв
- ЭЭД при проведении цифровой рентгенографии органов грудной клетки 0,1-0,2 мЗв, пленочной – 0,5-0,8 мЗв
То есть выходит, что врачи направляют на пленочную флюорографию (низкая информативность + повышенная доза), а затем для уточнения на рентген, облучая пациента два раза за короткое время. Естественно, не стал делать флюорографию, а сделал сразу рентген легких (доза облучения составила 75 мкЗв или, что тоже самое, 0,075 мЗв).
Какая доза облучения безопасна?
Следующим возник вопрос: а какую дозу облучения можно считать безопасной? Может, эти сомнения напрасны, и все эти дозы безопасны?
Оказывается, ответ на этот вопрос есть в Постановлении Главного государственного врача № 11 от 21.04.2006 «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований». Целиком постановление можно прочитать, например, здесь, ну а относительно дозы интересен пункт 3.2:
Обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации.
Т.е. проходя «бесплатную» плёночную флюорографию (ЭЭД 0,5-0,8 мЗв), человек практически мгновенно получает 50-80% от рекомендованного годового максимума!
Вот ещё пара цитат из форумов.
Флюорография или рентген грудной клетки?
Почему тогда всех отправляют на флюорографию, если она менее информативна и дает большую дозу облучения?
Потому в качестве массового обследования населения в бюджетных поликлиниках и больницах, флюорография обходится государству в 2-3 раза дешевле, чем рентген. Экономия на расходных материалах значительная.
Если результат флюорографического исследования вызывает сомнения, или обнаружены какие-либо патологии, то пациента отправляют на рентген, чтобы получить более точную оценку состояния легких.
А хоть рентген дает и меньшую дозу облучения, но после флюхи это дополнительная нежелательная доза. Не проще ли сделать сразу рентген?
Флюорография, как метод, это уже каменный век, но в маленьких бедных городах это до сих пор самый верный метод диагностики рака и туберкулеза. В крупных городах большинство клиник и больниц уже оснащены новейшим рентгенологическим оборудованием и про флюорографию уже забыли.
Что опаснее — рентген или флюорография?
Нет разницы между флюорографией или обычным снимком лёгких.Единственная разница-размеры получаемого снимка.
При влюорографии-они крайне маленькие,меньше 10 сантиметров сторона,что даёт громадную экономию в масштабах страны(когда плановая ФГ была обязательной для всех),и в то же время из-за маленьких размеров кадра требует использования увеличительного стекла,страдает более низкой разрешающей способностью.Рентгенплёнка,содержащая серебро-дорогая.
Вся эта проблема давно решена на западе-все снимки получаются в цифровом виде,записываются на компактдиск,и могут увеличиваться и рассматриваться с помощью спецпросмотрщиков как только угодно с использование цифровых фильтров и средств измерения.
Как контролировать дозу облучения
Поэтому, записываясь на снимок, обязательно нужно спросить у рентгенолога, какая будет доза облучения. На современном оборудовании (т.е.
цифра) она составляет 50-100 мкЗв (0,05-0,1 мЗв), в зависимости от типа снимка.
Если рентгенолог озвучивает 500 мкЗв (0,5 мЗв) или больше, безопаснее обратиться в другое медучреждение, где есть современная аппаратура с (относительно) небольшими дозами облучения.
Некоторые поликлиники приводят информацию о дозе на сайте. Пример информации на сайте СМ-Клиника:
При рентгене легких в «СМ-Клиника» используются следующие дозы излучения:
0,3 миллизиверта – при пленочном методе,
0,03 миллизиверта – при цифровом методе.
После снимка необходимо проверить, какая доза указана в заключении, подписанном рентгенологом. На этом примере указана ЭЭД 0,5 мЗв (на сегодняшний день многовато, лучше делать на современном оборудовании):
Эти данные нужно сохранять и подсчитывать суммарную дозу (1000 мкЗв или 1 мЗв в год).
Не рекомендуется делать несколько снимков в короткое время. Например, вроде проще один раз съездить в медцентр и сделать сразу два разных снимка, чем приезжать два раза с разницей в неделю, но на самом деле для здоровья это хуже (как говорит рентгенолог, «лучевая нагрузка больше»).
Ещё один источник облучения – кабинет стоматолога. Редкое лечение у стоматолога сейчас обходится без рентгеновских снимков, и все они тоже дают определённую дозу облучения:
- прицельный цифровой рентген 5-11 мкЗв,
- плёночный снимок — 14-18 мкЗв,
- цифровой панорамный снимок- 14-30 мкЗв,
- компьютерная трех дименсионная томография 35-75 мкЗв
И даже трансатлантический полет из Соединенных Штатов Америки в Европу сопровождается дополнительным воздействием на организм космического излучения в дозе приблизительно 0,05 мЗв.
Флюорография, рентген и доза облучения
- Чтение журнала событий Windows
- nhsms как служба Windows
Источник: https://nhutils.ru/blog/%D1%84%D0%BB%D1%8E%D0%BE%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D1%84%D0%B8%D1%8F-%D1%80%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD-%D0%B4%D0%BE%D0%B7%D0%B0-%D0%BE%D0%B1%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/
Доза облучения — Допустимая доза облучения для человека в рентгенах, лучевая болезнь
Какая доза облучения при рентгене, томографии, других медицинских процедурах воздействует на человека?
Общество еще со времени первых техногенных катастроф чрезмерно боится радиационных волн.
Узнав, что небольшое радиационное поле существует и у медицинских аппаратов для обследования и терапии, люди реагирует отрицательно. Однако такая реакция не оправдана: аппаратура в медучреждениях излучает безопасный для человека фон.
Риск развития заболеваний, связанных с радиацией, возникает только при чрезмерном использовании томографии и рентгена. Ниже представлены основные особенности радиоактивного поля, которым обладают аппараты, и сведения о предельно допустимых дозах облучения для человека.
Виды радиационного излучения
Радиация присутствует во всем, что нас окружает – даже в нашем собственном теле. Слабый фон есть у электроприборов, пищи, мебели.
Особенно высока вероятность встретиться с радиационным излучением при строительстве здания: многие кирпичные изделия, другие стройматериалы обладают повышенным фоном, который создает вещество под названием радон.
Радон попадает в атмосферу планеты из земной коры и приводит к образованию природной радиации, которая безопасна для человека. Люди постоянно получают радиацию от солнца, почвы, воды и пищи.
Серьезный риск для здоровья природная радиация представляет лишь в том случае, если фон накопился в помещении в результате длительного отсутствия проветривания. Испарения радона часто попадают в жилые помещения из материалов стен или из земли, при испарении подземных вод.
Если не проветривать помещение, вредоносные частицы будут накапливаться в воздухе и постепенно дойдут до опасной для человека концентрации.
Однако происходит такое очень редко, поэтому достаточно предпринимать профилактические меры (использовать дозиметр, проверять продукты, проветривать в доме), чтобы обезопасить себя от радиационных проблем.
Действительную опасность представляют те радиоактивные элементы, которые излучают фон по вине человека. Люди создают атомные электростанции, концентрация радиоактивных веществ в которых гораздо выше природной.
При техногенных катастрофах огромное количество вредоносной энергии высвобождается и наносит удар по здоровью живущих рядом с АЭС людей.
С деятельностью человека связано и другое явление, которое усиливает влияние радиации на живые организмы – неправильная утилизация радиоактивных отходов.
Медицинские аппараты, используемые для внутреннего обследования, тоже созданы человеком.
Значит ли это, что они представляют угрозу для его здоровья?
Нет. Волновое излучение устройств не превышает допустимую для человека норму.
Доза излучения: норма для человека и фон от медицинских аппаратов
Доза излучения измеряется в нескольких различных величинах: Бэр, мЗв (микрозивертах). Допустимая норма может измеряться за весь период жизни человека или за час.
В час максимально допустимо получать 0,5 мЗв. За всю жизнь – 500-700 мЗв. Радиация накапливается в организме, однако, если в час было получено не более 0,5 единиц, не наносит никакого вреда здоровью.
Лица, склонные к онкологическим заболеваниям, могут пострадать от дозы излучения выше 0,2 мЗв в час. КТ доза стандартного облучения (ее уровень см. ниже) может представлять угрозу для такой категории людей.
Однако при необходимости исследования можно заменить эту процедуру на более безопасную. Например, при МРТ суммарное количество лучевых излучений остается в пределах нормы.
Специалисты рекомендуют этот способ проверки как самый безопасный.
Фон от медицинских аппаратов
Доза облучения при флюорографии составляет от 0,150 до 0,250 мЗв за одну процедуру. Если поликлиника или больница плохо оборудована, использует старую технику, доза может составлять до 0,8 мЗв. Поэтому посещать нужно только современные клиники.
Доза облучения при КТ разнится от 1-2 мЗв (исследования головы) до 6-11 (проверка внутренних органов и грудной клетки). Несмотря на то, что доза превышает допустимую (0,5 мЗв), она не представляет опасности для пациента, если тот проходит обследования не слишком часто.
Доза получаемого облучения при компьютерной томографии снижается, если процедура проводится на новой аппаратуре. Сколько мЗв испускает она? В 2-10 раз меньше старой.
Цифровая флюорография наиболее безопасна. Облучение при ней (на новейших аппаратах) всего 0,002 мЗв. На старых – до 0,060.
При маммографии доза радиации для человека не опасная. Рискуют только пациенты с предрасположенностью к онкологии. При постоянном маммографическом обследовании возникает риск рака груди.
Рентгеноскопия может повредить здоровью, если проходить ее чаще 2-3 раз в год. Для получения снимка в рентгенах дозировка облучения достаточно велика.
Вызвать онкологию может 50 компьютерных процедур в год (ни одному пациенту столько не назначают, однако пострадать могут сотрудники мед. учреждений, не соблюдающие меры безопасности).
При частом прохождении флюорографического обследования тоже могут появиться проблемы со здоровьем. Доза рентгеновского облучения даже ниже, чем при флюорографии, поэтому нужно тщательно следить за тем, сколько мЗв поступило в организм.
Опасности подвергаются люди, которые по медицинским показаниям слишком часто проходят проверки:
- пациенты после аварии;
- люди с внутренними кровоизлияниями (лёгкие, брюшная полость);
- онкологические больные, которые часто проходят рентгенографию;
- спортсмены, у которых часто случаются переломы;
- лица с хроническими болезнями легких, которые требуют частой ФЛГ.
Предел годовой радиационной дозы – 150 мЗв.
Медицинским работникам нужно сообщать о количестве уже пройденных обследований за последний год, чтобы они помогли избежать превышения.
Для этой цели заводится медкарта, в которой отслеживается дозировка излучения за 365 дней. Если лимит подходит к концу, человека переводят на более безопасную процедуру или на новое устройство, где фона почти нет. Поэтому не стоит чрезмерно беспокоиться о риске онкологии при частом прохождении процедур.
Какие болезни могут возникнуть на фоне частых обследований
Человек, который из-за генетических особенностей чувствительно реагирует на излучение, может ощутить ухудшение самочувствия после процедур.
В числе симптомов передозировки – тошнота, головокружения, рвота, нарушения сна, потеря в весе, обмороки, бледность кожных покровов, чрезмерная потливость.
Эти признаки говорят еще не об онкологии, но уже являются достаточным основанием для отмены исследований. На сколько лет точно потребуется отказаться от обследований, подскажет врач.
В результате постоянного воздействия волн человек может заболеть лучевой болезнью, которая отразится на состоянии лёгких, нервной системы, кожи.
Однако в медицинской практике случаев лучевой болезни, возникшей после КТ или рентгена, не зафиксировано. Максимальный риск для пациента – это медленное развитие онкологии, которое может спровоцировать рентгенографический прибор.
Как обезопасить себя от радиации
Чтобы дозы облучения в квартире или доме оставались в пределах нормы, владельцы должны постоянно проветривать помещение.
Сколько гигиенических процедур необходимо для здоровья жильцов?
Небольшое проветривание должно проводиться хотя бы раз в день, а значительное (когда окно открыто 1-3 часа) – раз в неделю. Тогда сохранится допустимая доза облучения для человека.
Также можно предпринять следующие меры профилактики:
- Приобрести дозиметр. Прибором следует проверять фрукты и овощи в магазине, рыбу. При покупке строительных материалов, мебели, вещей для дома этот аппарат тоже эффективный, позволяет определить, сколько естественных мЗв испускает материал. Нельзя допускать, чтобы в жилое помещение попадали предметы с мощным радиационным полем.
- Проверять документацию строительных компаний и делать проверку партии материалов перед покупкой. В числе прочих исследований должно быть указано успешное прохождение исследования на радиацию. Требовать документы можно только у официальных продавцов, рыночные их зачастую не имеют. Поэтому и обращаться нужно в крупные проверенные компании.
Чтобы излучение не накапливалось в организме и не достигало более 150 мЗв в год (риск онкологии), нужно стараться избегать частого прохождения рентгеноскопии и схожих процедур.
Вместо рентгеновских снимков можно попросить об исследованиях по типу УЗИ. Дозы облучения при таких процедурах нет. Если пациент все же подвергается облучению, необходима таблица, где будут учитываться дозировки мЗв за последнее время.
Знания о радиационном излучении, представленные выше, помогут обезопасить себя и своих близких от онкологических заболеваний и нежелательного облучения. Используя базовые знания о радиации, можно сократить риск связанных с радиацией заболеваний в несколько раз.
Источник: https://otravlenie103.ru/izluchenie/doza-oblucheniya
Какова доза облучения при компьютерной томографии
Из множества лучевых методов исследований выделяют несколько, напрямую связанных с опасностью поражения ионизирующим излучением. Не последнее место в этом ряду занимает компьютерная томография, позволяющая выполнять диагностику внутренних органов и тканей без хирургического вмешательства.
Гамма-лучи, априори, вредны для человеческого организма, но, по сути, всё определяет доза облучения, полученная пациентом при проведении компьютерной томографии.
Что такое радиация
Основу метода составляет способность различных органов и тканей поглощать радиационное излучение, представляющее собой поток элементарных частиц, или квантов. Количественную оценку ионизации принято измерять в миллизивертах (мЗв). В повседневности нормой является доза порядка 15 мЗв за год. Примерно таков естественный фоновый уровень облучения.
При проведении мультиспиральной (многосрезовой) компьютерной томографии (МСКТ) получаемая пациентом доза облучения напрямую зависит от ряда факторов: продолжительности исследования, применяемого оборудования и областей сканирования.
Какова доза облучения при МСКТ
Различные ткани человеческого организма воспринимают ионизацию по-разному. Облучение при прохождении МСКТ отдельных областей составляет:
- желудочно-кишечный тракт (ЖКТ) – 14 мЗв;
- область грудной клетки – 11 мЗв;
- тазобедренная область – 9-9,5 мЗв;
- позвоночник – 5-5,5 мЗв;
- черепно-мозговые исследования – 2 мЗв;
- конечности – 1-2 мЗв.
Учитывая, что критической считается отметка в 150 мЗв в год, доза облучения при КТ – далеко не запредельна. Для взрослого человека лучевая нагрузка при КТ грудной клетки или КТ головного мозга находится в пределах допустимой нормы. Для детей, которые более чувствительны к радиации, значения дозы рассчитываются согласно с возрастными коэффициентами, приведенными в таблице:
Сканируемая область | |||
Возраст | Голова | Грудная клетка | ЖКТ |
Взрослый | 1 | 1 | 1 |
13-17 | 1.1 | 1.1 | 1.1 |
8-13 | 1.3 | 1.4 | 1.5 |
3-8 | 1.7 | 1.6 | 1.6 |
6 мес.-3 | 2.2 | 1.9 | 2 |
0-6 мес. | 2.6 | 2.2 | 2.4 |
Калькуляторы расчета эффективной дозы облучения пациента позволяют определить совокупное облучение в процессе КТ-исследования. На значение показателя влияют поглощенная доза, область сканирования и возраст человека. На основании полученной информации делают выводы о вреде воздействия рентгеновского излучения и риске отдаленных последствий.
Как часто можно делать компьютерную томографию
Частота проводимых исследований, в первую очередь, определяется мерой необходимости таковых, но следует учитывать и тот факт, что радиация имеет свойство накапливаться в организме. Не рекомендуется без крайней необходимости проходить исследование чаще одного-двух раз в год. Допустимая лучевая нагрузка на организм при КТ позволяет проводить диагностику раз в два-три месяца.
Существует вид томографии, при которой используются контрастные вещества, содержащие йодин и барий.
Лучевая нагрузка при проведении позитронно-эмиссионной томографии (ПЭТ-КТ) несколько выше, нежели при стандартной МСКТ. По получаемой ионизации она сопоставима с КТ брюшной полости, что необходимо учитывать при расчетах суммарных доз облучения пациента.
Преимущества компьютерной томографии
МСКТ – один из самых передовых и информативных методов ранней диагностики патологий, не требующий значительных временных затрат.
Многопроходное сканирование дает наиболее полное представление о стадиях, тенденциях развития и результативности лечения, но лучевая нагрузка на организм человека при компьютерной томографии несколько выше, чем при иных методиках. Поэтому следует вести учет видов и количества проведенных радиологических исследований.
Не следует прибегать к помощи томографа там, где можно ограничиться обычной рентгенографией. Облучение, полученное при МСКТ, превышает дозу от стандартной флюорографии примерно в три раза.
Возможные риски
Возможные последствия превышения допустимой дозы жесткого рентгеновского излучения могут быть крайне неприятны. Исследования показывают, что частое применение КТ, при которой доза облучения – существенна, повышают риск развития онкологических заболеваний. Примерная статистика выглядит так:
- до 30% – первые 3-4 года после проведения МСКТ;
- порядка 20% – в следующие 5-8 лет;
- 10-12% – в период от 9 до 13 лет.
В связи с этим крайне важно, чтобы лечащий врач вел тщательный учет полученной пациентом дозы ионизации с целью минимизации возможных последствий.
Существуют категории пациентов, которым не рекомендована КТ-диагностика: дети и беременные женщины. Даже небольшая доза облучения может быть опасна для ребенка, а также для развивающегося плода. Если существует эффективная альтернатива, врачи стараются прибегнуть к нелучевым методам диагностики.
Альтернативы
В качестве альтернативы компьютерной томографии можно рассмотреть ряд аналогичных радиолокационных и электромагнитных методов исследования таких, как магнитно-резонансная томография и рентгеноскопия в динамике (рентгенограмма). Можно уменьшать количество срезов (снимков) МСКТ, снижая, тем самым, временной интервал воздействия гамма-излучения и дозу облучения. Компромисс достигается за счет снижения информативности исследования.
Мифы и факты о выводе радиации из организма
Снизить риск неприятных последствий, которые вызвало облучение при проведении МСКТ, позволяют специальные препараты. Их цель: выведение радионуклидов из организма пациента после КТ. Линейка таких медикаментов широка: от банального активированного угля до сложных химических соединений. За основу в подобного рода препаратах берутся углерод, кальций и выделенные атомы йода.
В каждом конкретном случае для правильного выбора следует проконсультироваться у врача. Выполняют функцию защиты организма от радиации после проведенной компьютерной томографии и некоторые натуральные продукты: мед, свекла, растительные масла, орехи и рис.
Начав употреблять такую пищу перед прохождением МСКТ-исследования, можно значительно снизить вероятность возникновения неприятных последствий.
Источник: https://iDiagnost.ru/kt/kakova-doza-oblucheniya-pri-kompyuternoj-tomografii
Какая лучевая нагрузка при МСКТ (КТ) по органам: альтернативные методы исследования
Ионизирующее излучение — неблагоприятный фактор, который приводит к повреждению клеток, накоплению в них мутаций и развитию опухолей. Устройства, работающие на его основе, используются в медицине для диагностики заболеваний.
Одним из методов обследования является компьютерная томография (КТ). Пациенты боятся, что проведение КТ может причинить вред их здоровью. Для того чтобы разобраться в этом вопросе, важно знать, какое количество радиации при КТ получает человек.
Естественный радиационный фон
Все люди постоянно получают лучевую энергию даже без медицинских обследований. В Федеральном законе «О радиационной безопасности населения» используют термин естественный радиационный фон. Это совокупность воздействия на человека космического излучения и природных радионуклидов в земной коре.
Естественный радиационный фон составляет 5-10 мЗв в год. Для сравнения, воздействие при полете на самолете — 0,1 мЗв. Фон города Москвы — 0,02 мЗв.
Организм человека адаптировался к такому радиационному фону в процессе эволюции.
Как облучение влияет на организм?
Основная опасность для организма человека от регулярно воздействия ионизирующего излучения — увеличение числа мутаций в клетках и повышение риска развития опухолей.
При компьютерной томографии устройство делает несколько рентгеновских снимков, которые потом объединяются в одно трехмерное изображение.
Риск развития онкологических патологий зависит от частоты проведения КТ и давности процедуры:
- в первые 3 года после проведения компьютерной томографии риск возникновения злокачественных новообразований выше на 30%;
- в последующие 4-8 лет — на 15-20%;
- в период 9-14 лет — на 10%.
Указанная статистика свидетельствует о повышении риска развития опухолей. Поэтому врачам рекомендуется назначать рентгенологические методы только по строгим медицинским показателям и контролировать суммарный объем излучения, полученный пациентом.
Количество ионизирующего излучения, воздействующего на организм человека при компьютерной томографии, зависит от особенностей обследования. Суммарная доза для подтипов исследования может отличаться в несколько раз. На это влияет:
- исследуемая площадь тела. При КТ грудной клетки пациент получает дозу облучения в 2-3 раза больше, чем при обследовании головы;
- различия в коэффициенте поглощения, так как структуры человеческого тела поглощают ионизирующее излучение неравномерно;
- тип используемого томографа. В старых устройствах (КТ, СКТ) воздействуют жесткие рентгеновские лучи, которые приводят к лучевой нагрузке до 20 мЗв. В новых мультиспиральных компьютерных томографах (МСКТ) этот показатель не превышает 4 мЗв.
Указанные факторы индивидуальны. В связи с этим суммарная доза облучения при компьютерной томографии должна определяться для каждого пациента.
Как много радиации получает организм?
Министерство здравоохранения России выпускает специальные руководства для КТ-исследований, которые регламентируют допустимое облучение организма больного при обследовании. Оно зависит от исследуемой области тела и не должно превышать:
- при компьютерной томографии органов брюшной полости — 14 мЗв;
- при исследовании грудной клетки или легких — 11 мЗв;
- при диагностировании области тазобедренного сустава — 9,5 мЗв;
- при любых КТ-процедурах позвоночного столба — 5,5 мЗв;
- при обследовании ног и рук — 2 мЗв;
- при КТ головы — 2 мЗВ.
Ионизирующее излучение, которое сохраняется в организме, зависит от площади участков тела. Суммарная доза облучения при обследовании брюшной или грудной полости повышается.
Кт и другие методы обследования
В медицине используют различные методы, основанные на исследовании организма при помощи рентгеновских лучей. Чаще всего используются рентгенография и компьютерная томография. Дозы облучения у них различны.
При рентгенографии организм пациента получает до 0,5 мЗв. Процедура не выполняется при тяжелых патологиях, так как врач получает только 2-3 проекции очага с изменениями. Этого недостаточно для постановки диагноза.
Во время компьютерной томографии устройство делает до 100 последовательных снимков, которые с помощью специальных программ собираются в единое трехмерное изображение. Общая доза облучения повышается и доходит до 20 мЗв. При ПЭТ-КТ доза радиации увеличивается, так как радиоактивные препараты вводят в организм.
Уменьшение лучевой нагрузки
Общество радиологов России выпустило для пациентов методические рекомендации по снижению суммарной дозы:
- компьютерная томография проводится только по медицинским показаниям и назначению лечащего врача;
- лучше использовать МРТ и УЗИ, так как они не сопровождаются ионизирующим излучением;
- если женщина беременна или планирует зачатие, то от КТ следует отказаться.
Кт и частота обследований
Однозначного ответа о продолжительности интервалов между проведениями томографии нет. Это зависит от того, по какому поводу выполняется КТ.
Если метод использовался для выявления острого заболевания, то частота его применения не должна превышать 1-2 раз в год. Лучевое исследование всего тела не проводится.
При туберкулезе с хроническим течением, онкологии, КТ выполняется 3-4 раза в год с интервалом в три месяца.
Это приводит к серьезному повышению дозы облучения! Спасением для людей с такой частотой обследования является разработка нового принципа работы рентгенографии — томосинтез.
Метод имеет лучевую нагрузку до 0,07 мЗв, где доза снижается относительно нового МСКТ в 57 раз, в случае старого аппарата КТ — в 285 раз!
Защита от радиации и вывод из организма
В Интернете описаны методики выведения радиации из организма, начиная с использования кишечных сорбентов до регулярного употребления сухого красного вина. Однако это недостоверная информация.
Для защиты используются радиопротекторы (перед применением обязательно проконсультируйтесь с вашим лечащим врачом):
- экстренного действия (препарат Б-190);
- короткого действия (РС-1);
- пролонгированного действия (диэтилстильбэстрол).
Перед проведением компьютерной томографии пациент консультируется с врачом. Специалист рассказывает о предстоящем исследовании и определяет, требуется ли его проведение. Грамотный подход к диагностике снижает дозу облучения организма и предупреждает негативные последствия чрезмерной лучевой нагрузки.
Источник: https://osnimke.ru/interesnoe/obluchenie-kt.html
Все о дозах и вреде рентгеновского облучения: определения, описание единиц измерения, осложнения
Рентгенологическим видам обследования в медицине по-прежнему отводится ведущая роль. Иногда без данных рентгена невозможно подтвердить или поставить правильный диагноз.
С каждым годом методики и рентгенотехника совершенствуются, усложняются, становятся более безопасными но, тем не менее, вред от излучения остается.
Минимизация негативного влияния диагностического облучения – приоритетная задача рентгенологии.
Наша задача – на доступном любому человеку уровне разобраться в существующих цифрах доз излучения, единицах их измерения и точности. Также, коснемся темы реальности возможных проблем со здоровьем, которые может вызвать этот вид медицинской диагностики.
Что такое рентгеновское излучение О вреде воздействия рентгеновского излучения на организм человека В каких единицах измеряются дозы полученной радиации Естественный радиационный фон Вынужденные диагностические дозы рентген облучения Рекомендуем прочитать: Рентгенологические исследования и КТ: необходимость и опасность
Что такое рентгеновское излучение
Рентгеновское излучение представляет собой поток электромагнитных волн с длиной, находящейся в диапазоне между ультрафиолетовым и гамма-излучением. Каждый вид волн имеет свое специфическое влияние на организм человека.
По своей сути рентгеновское излучение является ионизирующим. Оно обладает высокой проникающей способностью. Энергия его представляет опасность для человека. Вредность излучения тем выше, чем больше получаемая доза.
О вреде воздействия рентгеновского излучения на организм человека
Проходя через ткани тела человека, рентгеновские лучи ионизирует их, изменяя структуру молекул, атомов, простым языком – «заряжая» их. Последствия полученного облучения могут проявиться в виде заболеваний у самого человека (соматические осложнения), или у его потомства (генетические болезни).
Каждый орган и ткань по-разному подвержены влиянию излучения. Поэтому созданы коэффициенты радиационного риска, ознакомиться с которыми можно на картинке. Чем больше значение коэффициента, тем выше восприимчивость ткани к действию радиации, а значит и опасность получения осложнения.
Наиболее подвержены воздействию радиации кроветворные органы – красный костный мозг.
Самое частое осложнение, появляющееся в ответ на облучение, – патологии крови.
У человека возникают:
- обратимые изменения состава крови после незначительных величин облучения;
- лейкемия – уменьшение количества лейкоцитов и изменение их структуры, приводящая к сбоям деятельности организма, его уязвимости, снижению иммунитета;
- тромбоцитопения – уменьшение содержания тромбоцитов, клеток крови, отвечающих за свертываемость. Этот патологический процесс может вызывать кровотечения. Состояние усугубляется повреждением стенок сосудов;
- гемолитические необратимые изменения в составе крови (распад эритроцитов и гемоглобина), в результате воздействия мощных доз радиации;
- эритроцитопения – снижение содержания эритроцитов (красных кровяных клеток), вызывающее процесс гипоксии (кислородного голодания) в тканях.
Другие патологии:
- развитие злокачественных заболеваний;
- преждевременное старение;
- повреждение хрусталика глаза с развитием катаракты.
Важно: Опасным рентгеновское излучение становится в случае интенсивности и длительности воздействия. Медицинская аппаратура применяет низкоэнергетическое облучение малой длительности, поэтому при применении считается относительно безвредной, даже если обследование приходится повторять многократно.
Однократное облучение, которое получает пациент при обычной рентгенографии, повышает риск развития злокачественного процесса в будущем примерно на 0,001%.
Обратите внимание: в отличие от воздействия радиоактивных веществ, вредоносное действие лучей прекращается сразу же, после выключения аппарата.
Лучи не могут накапливаться и образовывать радиоактивные вещества, которые затем будут являться самостоятельными источниками излучения. Поэтому после рентгена не следует принимать никаких мер для «вывода» радиации из организма.
В каких единицах измеряются дозы полученной радиации
Человеку, далекому от медицины и рентгенологии, тяжело разобраться в обилии специфической терминологии, цифрах доз и единицах, в которых они измеряются. Попробуем привести информацию к понятному минимуму.
Итак, в чем же измеряется доза рентгеновского излучения? Единиц измерения радиации много. Мы не будет подробно разбирать все. Беккерель, кюри, рад, грэй, бэр – вот список основных величин радиации. Применяются они в разных системах измерения и областях радиологии. Остановимся только на практически значимых в рентгендиагностике.
Нас больше будут интересовать рентген и зиверт.
Характеристика уровня проникающей радиации, излучаемой рентгеновским аппаратом, измеряется в единице под названием «рентген» (Р).
Чтобы оценить действие радиации на человека, введено понятие эквивалентной поглощенной дозы (ЭПД). Помимо ЭПД существуют и другие виды доз – все они представлены в таблице.
Эквивалентная поглощенная доза (на картинке – Эффективная эквивалентная доза) представляет собой количественную величину энергии, которую поглощает организм, но при этом учитывается биологическая реакция тканей тела на излучение. Измеряется она в зивертах (Зв).
Зиверт приблизительно сопоставим с величиной 100 рентген.
Естественный фон облучения и дозы, выдаваемые медицинской рентгенаппаратурой, намного ниже этих значений, поэтому для их измерения используются величины тысячной доли (милли) или одной миллионной доли (микро) Зиверта и Рентгена.
В цифрах это выглядит так:
- 1 зиверт (Зв) = 1000 миллизиверт (мЗв) = 1000000 микрозиверт (мкЗв)
- 1 рентген (Р) = 1000 миллирентген (мР) = 1000000 миллирентген (мкР)
Чтобы оценить количественную часть излучения, получаемого за единицу времени (час, минуту, секунду) используют понятие – мощность дозы, измеряемую в Зв/ч (зиверт-час), мкзв/ч (микрозиверт-ч), Р/ч (рентген-час), мкр/ч (микрорентген-час). Аналогично – в минутах и секундах.
Можно еще проще:
- общее излучение измеряется в рентгенах;
- доза, получаемая человеком – в зивертах.
Дозы облучения, полученные в зивертах, накапливаются в течение всей жизни. Теперь попробуем выяснить, сколько же получает человек этих самых зивертов.
Вынужденные диагностические дозы рентген облучения
Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.
Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека.
Но все же попытаемся привести усредненные цифры доз, которые может получать пациент. Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:
- цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
- плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
- рентгенография органов грудной полости: 0,15-0,4 мЗв.;
- дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.
Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.
Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.
Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.
Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.
Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.
Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.
Процедура | Эффективная доза облучения | Сопоставимо с природным облучением, полученным за указанный промежуток времени |
Рентгенография грудной клетки | 0,1 мЗв | 10 дней |
Флюорография грудной клетки | 0,3 мЗв | 30 дней |
Компьютерная томография органов брюшной полости и таза | 10 мЗв | 3 года |
Компьютерная томография всего тела | 10 мЗв | 3 года |
Внутривенная пиелография | 3 мЗв | 1 год |
Рентгенография желудка и тонкого кишечника | 8 мЗв | 3 года |
Рентгенография толстого кишечника | 6 мЗв | 2 года |
Рентгенография позвоночника | 1,5 мЗв | 6 месяцев |
Рентгенография костей рук или ног | 0,001 мЗв | менее 1 дня |
Компьютерная томография – голова | 2 мЗв | 8 месяцев |
Компьютерная томография – позвоночник | 6 мЗв | 2 года |
Миелография | 4 мЗв | 16 месяцев |
Компьютерная томография – органы грудной клетки | 7 мЗв | 2 года |
Микционная цистоуретрография | 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв | 6 месяцев 3 месяца |
Компьютерная томография – череп и околоносовые пазухи | 0,6 мЗв | 2 месяца |
Денситометрия костей (определение плотности) | 0,001 мЗв | менее 1 дня |
Галактография | 0,7 мЗв | 3 месяца |
Гистеросальпингография | 1 мЗв | 4 месяца |
Маммография | 0,7 мЗв | 3 месяца |
Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности. Некоторые люди ошибочно причисляют этот метод к рентгеновским.
Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.
При кратковременном облучении большие дозы считаются менее опасными, чем длительное воздействие малых доз.
Облучение при рентгене — риски, дозы, техника безопасности, видео:
Лотин Александр Владимирович, врач-рентгенолог
76,940 12
(51 голос., 4,55 из 5)
Загрузка…
Источник: https://okeydoc.ru/vse-o-dozax-i-vrede-rentgenovskogo-oblucheniya-v-medicine/